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The value of the Einstein B coefficient for stimulated emission for a collection of atoms interacting with a 
radiation field is shown to depend upon the velocity distribution of the excited atoms and also upon the 
variation of field intensity with frequency. An emission line narrowing phenomenon for radiating matter en­
closed in a nonresonant cavity with reflecting walls is predicted. It is shown that a loss mechanism must be 
introduced if significant line narrowing is to result from a single pass of radiation through an amplifying 
medium. An additional contributing effect to the mode pushing and mode pulling phenomena in a gas laser is 
demonstrated. A method of setting a gas laser to a predetermined frequency is described. 

1. INTRODUCTION 

THE investigations of Planck1 and Einstein2 into 
the problem of blackbody radiation were of great 

importance to the development of modern physics. This 
well-known problem involves the frequency distribu­
tion of the radiation emanating from a small hole in a 
heated cavity in thermal equilibrium. The idea of stimu­
lated emission and the A and B coefficients were intro­
duced by Einstein to describe this equilibrium state. The 
ratio of these two coefficients is known in this theory, 
but until the development of wave mechanics no method 
was available for finding their separate values. 

In the equilibrium considered by Einstein, the inter­
action of the radiation field with the cavity walls ob­
scures the sharp emission lines of the enclosed gaseous 
matter in the cavity. Over the small range of frequencies 
encompassed by a given emission line of the gaseous 
enclosed matter, the radiation field in the cavity is 
essentially constant. For this reason, as we shall show 
in detail, the B coefficient appears as a constant. 

We will consider the problem of a gas in thermal mo­
tion interacting with a radiation field whose intensity 
varies significantly over the range of frequencies 
associated with a given emission line of the gas. It will 
be shown that the average value of the B coefficient for 
the collection of matter depends upon the form of the 
radiation field intensity function and upon the velocity 
distribution of the matter. These considerations will be 
of importance in our discussion of gas lasers and also 
for the nonresonant cavity to be discussed. Such de­
pendence can also be significant for a gas radiating in 
free space' As stated, the effect is obscured if the field 
is constant over the range of frequencies associated with 
the emission line of the gas. 

An emission line narrowing phenomenon is predicted 
for radiating gaseous matter enclosed by a nonresonant 
cavity with reflecting walls if the gas has a sufficient 
population inversion. 

All of our work will presuppose that correlation effects 
between the gas atoms are absent.3 

A weighting function is introduced to discuss prob-
1M. Planck, Ann. Physik 4, 553 (1901). 
2 A. Einstein, Physik Z. 18, 121 (1917). 
3 1 . R. Senitzky, Phys. Rev. 121, 171 (1961). 

lems involving the interaction of an excited gas with a 
radiation field. This function is used in a discussion of 
gas lasers and in the analysis of a postulated effect which 
contributes to mode pulling and mode pushing phe­
nomena of the sort discussed by Bennett.4 

An experiment is reported in which the higher order 
terms in the mode pulling phenomenon are directly 
measured. Discrepancy between the results of this ex­
periment and the predictions of the Bennett theory is 
explained by resort to the additional mode pushing 
effect we have postulated and analyzed. 

Several methods of setting a gas laser to a known fre­
quency which are convenient and simple are outlined. 

Zeeman and Stark effects are not considered in this 
paper. The generalization of our work to cases where 
Zeeman or Stark effects must be considered, however, 
is direct and simple. 

2. THEORY 

Let us consider a collection of gaseous matter inter­
acting with a radiation field and focus our attention 
upon a particular transition in the gas. We shall desig­
nate by Ni the number of gas atoms per unit volume in 
the upper energy level E% and by iVi those in the lower 
energy level E\. We shall ignore all interactions except 
2 -» 1 or 1 -> 2. 

In a nonresonant cavity or in free space, the Einstein 
coefficient for spontaneous decay A^i is equal to (r) -1 , 
where r is the lifetime of level 2 for the decay 2 —» 1 
when stimulation effects are absent.5 

The Einstein coefficient B2i represents the probability 
that a member of N2 will decay to level 1 and emit a 
photon of frequency vo=(E2—Ei)/h (h is the Planck 
constant) when in the presence of a radiation field which 
appears to have unit energy density at the frequency 
vo in the rest frame of the atom considered. The Einstein 
Bu coefficient represents the probability that a member 
of Ni will absorb such a photon under these conditions. 
If the field is described in the rest frame of an enclosing 
cavity, this definition presupposes that the absorbing 

4 W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962). 
5 A. Mitchell and M. Zemansky, Resonance Radiation and Ex­

cited Atoms (Cambridge University Press, Cambridge, England, 
1934), pp. 94, 99, 100, 161, 268. 
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atom is stationary in the rest frame of the cavity unless 
the energy density of the field is constant over the range 
of Doppler-shifted frequencies which can appear as vo 
to a moving atom. 

We shall initially adopt the viewpoint that an atom 
can be stimulated to absorb or emit a photon only when 
radiation satisfying the Bohr condition E2~Ei=hvo in 
the rest frame S of the atom is incident on the atom and 
consider only Doppler-broadening effects. We shall then 
extend the argument to include the net effect of all proc­
esses which symmetrically broaden the emission line 
shape. Cases where asymmetric broadening effects oper­
ate shall not be considered, but the generalization of our 
work to such cases is direct. 

Doppler-shift effects are of considerable importance 
in problems involving the interaction of radiation with 
matter.4 While, in the rest frame S of the atom, any 
radiation energy emitted or absorbed appears to be of 
frequency vo, this radiation will appear in the rest frame 
So of the mass center of the radiating gas to have a 
Doppler-shifted frequency v. The relativistic connec­
tion between v and vo is6 

v 1+p cos0 
- = - . (1) 
v0 {l-/?2}1 '2 

In (1), p=s/c, where s is the speed of the atom in the 
So frame, c is the speed of light in the gas, and 6 is the 
angle between the velocity of the atom and the direction 
of emission of emitted radiation or, in the case of ab­
sorption, of incidence of the stimulating radiation. Let 
us assume c5>s so that (1) can be approximated by the 
familiar formula: 

*yVo=l+0cos0. (2) 

With every (6,d0) we can associate a conical element 
of solid angle dQ, whose axis lies along the direction of 
the velocity of the atom—which we take as the polar 
axis—in the So frame. This is shown in Fig. 1 below. In 
Fig. 1, 6 is the polar angle and <f> is the azimuthal angle. 
Only through the dQ, associated with an appropriate 
(6,d6) can radiation of frequency v stimulate an ab­
sorption or emission process for the atom. The value of 
d$l in steradians is found below: 

/.27T 

dtt= / (sinddd)d(t) 
Jo 

= 2vsm6de. (3) 

Combining (2) and (3), we obtain 

d&= 2irtl-(c/sy(v-vo)2/vo2J/2dd. (4) 

Let us now assume that the velocity distributions of 
iVi and N2 are isotropic Maxwell-Boltzmann (M-B) 

6 C. Miller, The Theory of Relativity (Oxford University Press, 
London, England, 1952), p. 62. 

FIG. 1. Solid-angle ^^^K\ 
element associated ^ - ^ " ^ ^ ^ \ 
with stimulation by ^ ^ ^ ^ \ \e\ 
radiation of fre- ^ s ^ — — ^ , 
quency v. ^^^^i^L 

distributions. Then we can write for the distributions of 
speeds of members of Ni and N2 the following7: 

n1,2(s) = 4ty*N1,2S2(Tr)-1/2 e x p ( - 7 V ) , (5) 

In (5), y~m{2kT)~l, where m is the atomic mass, k is 
the Boltzmann constant, and T is the gas temperature. 

Consider the line shape of the radiation from a gas in 
free space which is associated with a transition for which 
Doppler broadening is overwhelmingly dominant over 
other broadening effects. This is a problem which has a 
familiar treatment in which one merely substitutes 
(2) into the velocity distribution in order to obtain the 
change in wavelength due to the Doppler effect of the 
component of velocity of the emitting atom along the 
line of sight.8 We shall, however, treat it by a different 
method which is more cumbersome in this particular 
case but has greater power in more difficult calculations. 

We consider the problem in free space and assume the 
radiation field is sufficiently weak that stimulation proc­
esses can be ignored. We will obtain the line shape and 
the intensity of the spontaneously emitted radiation 
by weighting the Einstein A 21 coefficient by a frequency-
dependent weighting function which we shall designate 
by n2(v). The function will be seen to bear an intimate 
relation to the absorption coefficient used, for example, 
by Milne.9 We shall generalize, however, to three di­
mensions and consider the problem in somewhat greater 
detail. This function, if integrated over v, must equal N%. 
This condition is set by the requirement that our cal­
culation technique, if correct, must give the same re­
sult Einstein obtained2 if n(v) is used as a weighting 
function to replace N in the blackbody radiation prob­
lem he considered. The function n^iv) depends upon the 
thermal distribution of speeds of the radiating matter 
and involves the solid-angle effect we have considered. 
The idea of such a function is familiar in a one-
dimensional form in absorption problems and seems to 
be original with Milne.9 Milne did not explicity evaluate 
n(v) and he assumed that fi2(v)/ni(v) = N2/Ni which we 
shall show is not valid in general. 

Let us evaluate n^iy) and ni(v) assuming that N2 

and N\ have a M-B distribution of speeds. 

ni,2(v)=£ / ni,2(s) —ds. (6) 
Jo dd 

7 E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill Book 
Company, Inc., New York, 1938), p. 47. 

8 H. E. White, Introduction to Atomic Spectra (McGraw-Hill 
Book Company, Inc., New York, 1934), p. 419. 

9 E . A. Milne, Monthly Notices Roy. Astron. Soc. 85, 117 
(1924). 
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Using 
/•00 

# i , 2 = / nlt2(v)dv, (7) 

Jo 

to evaluate the constant £ in (6), we obtain 

niM^ycNM-UKro)'1 exp[-{yc(v-v0)/vo}*l. (8) 
Let p(v) designate the radiation energy density in the 
radiating gas. When stimulation effects are negligible, 
p{v) is 

p(v) = ycN2(Tr)-1/2(v0)-
1A 21hv 

Xexp[~{7<^-^o)Ao}2]. (9) 

Equation (9) has the proper well-known Gaussian 
shape.8 This result is of particular interest to us in our 
study of stimulated emission, since spontaneous emission 
can be considered to arise from stimulation of emission 
by a zero-point oscillating field.10 

If we have an isotropic M-B velocity distribution and 
if Doppler broadening is not overwhelmingly dominant, 
then (6) must be replaced by 

i 
n(v) = 

/•" exp[-(2f/A^)2m2] 
X / di 

J^ l + { [ 2 / ( A * N + A ^ ) ] ( , - . 0 - m 2 

£ r 
— / ds n(s) 

AJ'JST+AJ'L Jo 
r-l^+*i* {\+[c/s{vo-v{\-yYjyi2 

X dy, 

j v-Hv-w-sic) i+4yy(Aj/tf+Aj'L)2 

(10) 
where Av& is the natural line breadth, AVD is the Doppler 
breadth, and AVL is the Lorentz breadth.5 Stark-effect 
broadening and Holtsmark broadening shall be ignored 
but the extension of our work to such effects is direct 
and obvious. In a gas or vapor that is not electrically 
excited and whose pressure is kept below 0.01 mm, 
Stark-effect broadening and Holtsmark broadening may 
be ignored. If a foreign gas is present, however, whose 
pressure is over about 5 mm, the contribution to the 
line breadth due to Lorentz broadening can be 
significant.5 

Doppler effect and the natural-breadth effect are en-
entirely independent broadening processes.5 Conse­
quently, we could calculate the combined result of these 
effects in (10) by considering every infinitesimal fre­
quency region of (8) to be broadened by the natural 
linewidth effect. We shall ignore the interdependence of 
Doppler and Lorentz broadening. This latter simplifica­
tion enabled us to combine Lorentz broadening with 

10 L. Schiff, Quantum Mechanics (McGraw-Hill Book Company, 
Inc., New York, 1955), 2nd ed., p. 400. 

Doppler broadening in (10) in the same way that natural 
broadening was combined with Doppler broadening. 

3. NONRESONANT CAVITY 

Let us now investigate the steady-state radiation 
field inside a nonresonant cavity. We assume the en­
closed gas has constant populations of its relevant en­
ergy levels and an isotropic M-B velocity distribution. 
The cavity walls are to be made diffuse reflectors so that 
the enclosed radiation field will be uniform and isotropic. 

The equilibrium condition for the radiation energy 
density p(v) in the cavity is obtained by equating energy 
gains to losses.2 

hvB2ip{v)n2(v)-\-A 2ihvn{2v) 
= B12P(v)hm1(p)+Lp(v). (11) 

The term Lp(y) in (11) brings the reflection losses into 
the energy balance. In this model, L depends only upon 
the wall reflectivity r which we assume is constant. 

At points on the cavity walls, radiation is incident 
from one-half the solid angle that it is at interior points. 
Thus, p(v) at wall points is one-half p(v) at interior 
points. Therefore, 

L=%c(l—r)(wall area/cavity volume). (12) 

If the cavity is a hollow sphere of radius J?, (12) becomes 

L=(3c/2R)(l-r). (13) 

The Einstein coefficients must obey the following rela­
tionships when thermodynamic equilibrium exists2: 

A21/B12=STh(v/cy(gl/g2), (14) 

B21/B12=gl/g2. (15) 

In the above, g2 and gi are the statistical weights of the 
upper and lower states, respectively. While the A and 
B coefficients are related to atomic constants, the B 
coefficient will be shown to be a constant only for atoms 
which are stationary in the rest frame S0 if the radiation 
field varies over the range of frequencies associated with 
an emission line. 

If we substitute for B12 and B2h (11) becomes 

A2ic
zp(v)n2(v) 

\-A 2ihvn2(v) 
STTV2 

A2lc*p(v)ni(v)g2 

= \-Lp(v). (16) 
8irv2gi 

We shall henceforth assume that Doppler-broadening 
effects are overwhelmingly dominant. Then, n\{y) and 
n2(y) are expressed by (8). Under this assumption, we 
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can solve (16) to obtain 

r W 1 / 2 3 ( i - r ) 
p(v) = exp{ (yc/v0)*(v—v0)

2} 
L 2RhyN% 

( 1 - ) \ • (17) 

Suppose the background gas has a M-B distribution 
of speeds. Let the excitation process be such that atoms 
enter into N2 and TVi with a M-B distribution of speeds. 
In the steady-state this implies that atoms leaving Ni 
and N2 have a M-B distribution of speeds. However, 
this does not imply that the atoms belonging to N\ and 
N2 have a M-B distribution of speeds. This is true even 
when thermodynamic equilibrium exists. 

An argument will be made now to show that in such 
circumstances the atoms in N\ and N2 may have a dis­
tribution of speeds which differs from a M-B distribu­
tion. The argument will be based upon deducing that 
the probability for a stimulation process for an atom is 
a function of the atom's speed. 

Consider an atom moving through the isotropic radia­
tion field in the cavity. Such an atom can be stimulated 
by radiation in the frequency range 

v*(\-s/c)^vi,v*(l+s/c). (18) 

Equation (18) reveals the frequency range of the radia­
tion which can stimulate an absorption or an emission 
process by an atom is directly proportional to the atom's 
speed. Thus, for the frequency range of the half-width 
of an emission line, an atom of high speed will have a 
smaller solid angle through which stimulation can occur 
than will an atom of low speed. The typical peaking of 
the radiation field associated with an emission line thus 
means that a stimulation process is less likely for ex­
cited atoms of high speed than for those of low speed. 
On the other hand, except in a resonant cavity, the 
probability of a spontaneous decay is independent of the 
presence of a radiation field. Therefore, for atoms of 
different speeds considered in the So frame, there are 
apparent differences in the value of the Einstein B co­
efficient because of the difference in the relative proba­
bilities of stimulated processes. The weighting functions 
n\{v) and n2(v), however, give us a means of taking these 
apparent shifts into the calculation when we know the 
velocity distribution of Ni and N2. If the velocity dis­
tributions are unknown, these weighting functions, al­
though not explicitly known, give us a means of finding 
it by enabling us to compute the rate of change of the 
probability of stimulating a transition with respect to 
changes in atomic speed. The values of the Einstein 
coefficients that apply to an atom stationary in the rest 
frame of the cavity can be used in our equations if we 
employ ni(v) and n2{v) as weighting functions since 
these functions allow us to refer the calculations into 
the rest frame of the cavity, 

( i T - / ' ) / i r x io —> 

FIG. 2. Neon 6328 A line shape as a function of Nz for a 
particular nonresonant cavity. 

Thermalizing interactions tend to bring n2(s) and 
ni(s) to the speed distribution of the background atoms. 
To the extent that such thermalizing interactions occur, 
those systems leaving N± and N2 will deviate from the 
speed distribution of the background gas. However, in a 
sufficiently intense radiation field, the time between 
collisions is much larger than the average lifetime in 
state 2 because of stimulation processes.11 

Let us now proceed to a detailed consideration of (17). 
As N2 increases, the peak value of p(v) increases and the 
line narrows. As the net stimulated emission approaches 
to within an order of magnitude of the losses, this nar­
rowing increases rapidly. This narrowing process is 
limited by the attainable population inversion. 

In Fig. 2 below, (17) is plotted for the 6328 A line 
of neon gas located in a cavity having an R of 10 cm and 
an r of 0.98. In this case, r is about 10~7 sec.12 Thus, 
when N2gh$>Nig2, (17) becomes 

p(v) = 6.6X 10-13[(2.6X W/N2) 

X e x p f S ^ X l O 1 1 ^ - ^ ) 2 / ^ 2 } - ! ] - 1 . (19) 

Notice the very sharp line narrowing that develops as 
N2 approaches to within an order of magnitude of 
2.6X109atoms/cc. 

Let us define Av to be the emission line half-width. 
Then, in terms of Av, (17) can be written 

N2-Nlg2/gl=w^L/(B21hyc) 

X [ 2 - e x p { ( 7 ^ o ) 2 ( A T / 2 ) 2 } ] . (20) 

Equation (20) reveals clearly that an increase in 
N2—Nig2/g\ leads to a decrease in Av. For the neon 
example, (20) becomes 

iV 2 - iVg 2 /^=2.6Xl0 9 [2-exp{4X10- 1 9 (A^) 2 }] . (21) 

11 A. L. Schawlow and C. H. Townes, Phys. Rev. 113, 1940 
(1958). 

12 W. J. Bennett, Jr., in Quantum Electronics, edited by J, 
Singer (Columbia University Press, New York, 1961), p. 28, 
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FIG. 3. Neon 6328 A linewidth as a function of N% for a 
particular nonresonant cavity. 

Equation (21) is plotted in Fig. 3 below, assuming 

If we now combine (19) and (17), we obtain 

p(v) = &irh(v/c)* 

X 
exp{yc/v0)

2(v-vo}2 

2-exp{(7^Ao)2(A^/2)2} 
(22) 

In the limit of significant line narrowing, (22) becomes 
approximately 

SwhWcy{v0/(yc)V 
P W = . (23) 

( , - ,o ) 2 +(A»/2) 2 

The similarity of the shape of (23) to the Lorentzian 
natural line shape has some interesting implications. 

For a homogeneously broadened emission line, a nar­
rowing of the emission line if a population inversion 
exists also occurs due to the peaking of the Lorentzian 
line shape of such emission lines and to the fact that the 
cavity we have assumed is lossy. This lossy characteris­
tic comes from the fact that the walls are imperfect re­
flectors and that, therefore, radiation of all frequencies 

375 750 1125 

A V (MC/sec) 

15*00" 

FIG. 4. Rate of creation of members of iV2 as a function of 
linewidth for a particular nonresonant cavity. 

is subject to an attenuation. On the other hand, all 
atoms (as we have shown) are preferentially available 
for stimulation processes to radiation of frequency vo. 

The power that must be supplied to the system for the 
transition we have considered can now be estimated by 
use of the following approximation: 

power input/cc=Lp(v0) Av. (24) 

For a spherical nonresonant cavity, (24) becomes: 

power input/cc= 
- l + [ 2 - e x p { T A o ) W 2 ) 2 } ] -

(25) 

In (25), X0 is the wavelength in the cavity of radiation of 
frequency v0. Figure 4 shows (25) for the example. 
Notice the typical sharp increase of the required power 
input/cc as Av becomes small. 

Let P(s) be the probability per second of stimulating 
an emission photon from an excited atom of speed s 
moving in an isotropic radiation field of energy density 
p(v). We shall show that P{s) decreases with an increase 
of s if p(v) is peaked at v—v§. We can write that 

P(s) = K 1 70(l+is/c) 

p{v)U.-{{c/s){v-va)/VsiYJiHv, (26) 
VQ(1—S/C) 

where K is a positive constant. 
Letting y=(v—vo)cs~1vo~1 in (26), we obtain 

- / ; 
P(s) = Ksv0c-1 / p(?0+svoy/c)Zl-y*J/2dy. 

If p(v) is a constant equal to £, this gives 

P(S)^USV^KTT , 

which must be equal to£2i£, where B2i is the Einstein 
coefficient for stimulated emission for a stationary atoms 
($=0). Therefore, 

J-i 
P(S) = 2(T)-1B2I p(vo+sr<iy/c)0-y*J'*dy. (27) 

J-i 

For a stimulated absorption, we need only replace 
(g2/gi)XB2i by Bn in the above. By assumption, p(v) is 
peaked at V—VQ—which corresponds to ;y=0—and de­
creases as|*>—j>0| increases. Therefore, we see that (27) 
tells us that 

dP(s)/ds<0 

when p{v) is peaked at v- vo, which is what we set out to 
demonstrate. 

We see now that the Einstein B coefficient for a col­
lection of matter in thermal motion can be treated as 
constant only if the radiation field is constant over the 
range of frequencies associated with a given transition. 
In addition to the Doppler-shift effects due to the ther­
mal motion of the radiating matter, it is clear that effects 
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due to the natural line shape and intensity are impor­
tant. If the cavity walls are merely lossy reflectors or if 
the gas is in free space the typical sharp emission lines 
of the gas make such considerations of importance. 

As a result of our work, we see that Milne's use of 
n2(v)/ni{v) = N2/N1 is correct only when the members of 
Ni and N2 have the same velocity distributions. 

4. LINE NARROWING BY SINGLE TRAVERSE 
THROUGH A REGION WITH AN 

INVERTED POPULATION 

A narrowed emission line can also be obtained by 
passing a radiated emission line through a region in 
which a gas with a population inversion is enclosed. 
This approach, however, is not capable of giving as 
narrow a line as can potentially be obtained from the 
nonresonant cavity (provided sufficient population in­
versions can be obtained) because of saturation-broad­
ening effects. This is so because in this approach all 
excited atoms in the gas cannot be stimulated to emit 
by radiation of frequency vo. In this technique, radiation 
of a given frequency propagating through the excited 
gas can stimulate only certain atoms because of 
Doppler-shift effects. By the usual line-of-sight argu­
ment, (11) describes the gain function for such a 
traveling radiation field. 

The experimental result to be expected is now clear. 
At first, line narrowing will occur. This narrowing will 
continue until all atoms available for stimulation by 
radiation of frequency v0 are stimulated. After this 
optimum point, the line will broaden and square off. 
This occurs as the intensity of the radiation at other fre­
quencies increases to the point where the excited atoms 
preferentially available at these other frequencies are 
stimulated to emit radiation centered at these fre­
quencies. This limitation can be defeated by introducing 
a frequency-independent energy loss mechanism since 
n2(v) is typically peaked at vo.12a Such a technique, how­
ever, limits the maximum output intensity of the radia­
tion to the incipient saturation value. In the non-
resonant cavity, no such limitation on the line narrow­
ing exists since all excited atoms in the upper energy 
level of the transition are preferentially available for 
stimulation by radiation of frequency J>0. I t may, how­
ever, be impossible to produce population inversion in 
a nonresonant cavity of sufficiently large dimensions to 
expect line narrowing to develop as large as those that 
can be obtained in a narrow tube. 

5. GAS LASER 

The relative gain curve of a gas laser operating on an 
inhomogeneously broadened line has an essentially 

12a Note added in proof. The author, in a manuscript which has 
been submitted for publication, has shown it is possible when 
proper losses are introduced—both in the single traverse case 
and also in certain types of resonant and nonresonant cavities—to 
achieve output half-widths only 2 orders of magnitude greater 
than gas laser half-widths and which are sharply defined at v0, 
the center frequency of the emission line. 

Gaussian shape with a dip at the center frequency VQ. 
The function n2{y) describes approximately the emis­
sion which can be stimulated inside the laser before 
oscillations start. However, a dip in gain at the center 
of the relative gain curve when the gas has a single 
isotope results because only one group of excited atoms 
in this frequency region can be stimulated to emit 
radiation, whereas at other frequencies two groups of 
excited atoms are potential contributors of radiation. 
This effect results from reflection of the oscillating radi­
ation field at the mirrors of the laser. Obviously, once 
the laser threshold condition11 is satisfied, the amplitude 
of the radiation field at resonant frequencies will build 
up until limited by energy losses from the cavity and by 
the ability to excite atoms into N2. In general, two re­
gions of depletion will be burnt in n2(v) for each oscil­
lating frequency. These regions of depletion in n{v) are 
equivalent to Bennett's "holes'' in the relative gain 
curve. I t is the gain coefficient k(v) in Beer's law for 
propagating radiation which is directly proportional to 
n2{v) — ni(v).5 

Consider a laser operating on an inhomogeneously 
broadened emission line. Since the relative gain curve 
is close to Gaussian, this means the atoms which can be 
stimulated to emit have a M-B distribution of velocities 
along the laser axis. Because of the holes in n2(v), 
n2 (s) is not a M-B eistribution of speeds. The Gaussian 
shape of the relative gain curve, however, is predicted 
by our analysis. This is so because only those atoms 
recently excited into N2 will interact with the oscillating 
radiation in the laser, all other members of N2 (neglect­
ing thermalizing) being essentially nonavailable to 
stimulation processes. These recent arrivals will have a 
velocity distribution close to that of the background 
matrix—which should be close to M-B. 

6. MODE PULLING AND MODE PUSHING 

Mode pulling and mode pushing in gas lasers have 
been investigated by previous workers.4-13»14 An addi­
tional effect contributing to the mode pulling phenome­
non will now be discussed. This effect seems to con­
tribute also to the mode pushing phenomenon. 

Consider the interaction of an excited atom with an 
oscillating radiation field inside the cavity of a gas 
laser. Because of Doppler-shift effects, such an inter­
action involves the thermal motion of the excited atom 
with respect to the cavity, as we have shown. Before 
any oscillations commence, any stimulated radiation 
will have a Lorentzian distribution centered at the 
Doppler-shifted value corresponding to s in the rest 
frame of the emitting atom. 

In a gas laser, emission into an oscillating field is al-

13 C. H. Townes, in Quantum Electronics, edited by C. H. 
Townes (Columbia University Press, New York, 1960), p. 3. 

14 J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 99, 
1264 (1955). 
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most completely due to stimulation.15 An atom stimu­
lated to emit into such a field will donate its energy pri­
marily at the frequency of the oscillating field vm and 
in phase with it.15 This is true despite the fact that if 
the atom were to spontaneously emit energy into the 
direction involved, this energy might be centered at a 
different frequency v.1Q 

Let us designate the center frequency of a resonance 
of a Fabry-Perot interferometer by vc. The response of 
such a cavity is a symmetric function of v—yc.

17 In 
general, however, fi2(vc) will have a nonzero slope. Thus, 
most of the emission into the oscillating field is stimu­
lated from excited atoms that would spontaneously emit 
into the direction of the oscillating field radiation of 
frequencies greater or less than vc. 

Mode pulling effects are typically of the order of 
103-105 cycles.4 Thus, the following picture of the 
build-up of the oscillating field in an active laser is 
reasonable. Because Avc and APN are of the order of 
megacycles, the half-width of the oscillating field during 
the early stages of its build-up is at least of the order of 
tens of kilocycles. The final frequency of the oscilla­
tion will thus not be vc necessarily, but will be set by 
the most favorable gain balance between the passive 
cavity response and the relative gain with respect to 
frequency of the laser. The cavity response of the active 
cavity may thus differ from that of the passive cavity. 
This effect gives a contribution to mode pulling which 
is independent of the contribution due to the anomalous 
dispersion effect. 

We shall make the assumption that the excited atoms 
have a Maxwell-Boltzmann velocity distribution along 
the spatial mode of the oscillation. Then, as we have 
already seen, the distribution of potential contributors 
of spontaneous emission of frequency v is approximately 
equal to 

fh(v) = yc(ir)-1/2Po~1N2 exp[- {yc/v0(v~vQ}2]. (28) 

Equation (28) assumes that the line is inhomogeneously 
broadened and also that an isotopic mixture is present 
in the laser which obscures the drop in the center of 
the relative gain curve assignable to each isotope.18 If 
only a single isotope directly participates in the laser 
action, then the Gaussian factor in the numerator of 
(10) must be corrected to take account of this effect. If 
several isotopes are present, the relative gain curve of 
the laser will be the weighted sum of the n(v) functions 
for the various isotopes. 

The relative probability for stimulating emission 
centered at frequency vc into a given direction from an 
atom which would spontaneously emit radiation cen-

15 O. S. Heavens, Appl. Opt., Suppl. 1, 1 (1962). 
16 W. R. Bennett, Jr., Appl. Opt., Suppl. 1, 24 (1962). 
17 M. Born and E. Wolf, Principles of Optics (Pergamon Press, 

Inc., New York, 1959), p. 327. 
18 A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963). 

tered at v into that direction is given by the Lorentzian4 

C l + { 2 ( ^ - ^ c ) / ( A ^ + A ^ ) } 2 ] - 1 . (29) 

The mirror reflectance coefficient varies by the order 
of magnitude of a factor of 2 over 1000 A.4 This varia­
tion introduces a completely negligible effect over the 
width of an emission line. 

The expression for the cavity response of a Fabry-
Perot interferometer is an Airy function.17 If the finesse 
of such a device is high, this function becomes very close 
to a Lorentzian. The cavity of a gas laser must have such 
a high finesse in order to achieve oscillation. In terms of 
Avc, the half-width of the passive cavity response, 
the passive cavity response of a gas laser is thus 
approximately 

[i+iv-vcY/tAvc/iy-]-1. (30) 
Mode pulling effects are small in comparison to the 

half-width AJ>C.4 Thus, the cavity response will be rela­
tively flat over the region of mode pulling since it is 
near the maximum of the passive cavity response. This 
is not true, however, of the relative gain curve of the 
laser in the neighborhood of vc unless the gain curve 
has a local maximum or minimum. 

Let us assume that he excited atoms in iV2 have a 
M-B distribution of velocities along the laser axis. Then, 
the contribution to the quantity (vm—vc)—which is 
known as the mode pulling—which is due to the effect 
we are considering is equal to the following: 

/ (v—Vc) exp£—{yc/v0(v— vo)}2~] 

X[l+(^-^ c ) 2 / (A^/2) 2 ] - 1 ^ 
/•oo 

-f- / expl-{yc/vo(v-vo)}2l 
J-vc 

x[\+{v-vcy/{Avc/2y-yHv. (31) 
Expression (31) for the contribution of this effect to 
vm—vc can be written since the cavity resonance is an 
effect independent of the emission line broadening 

FIG. 5. Contribution to mode pulling phenomenon in a gas laser 
of effect considered for an isotopic mixture. 
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effects we have considered. An approximation can be 
made to solve (31), and we thereby obtain 

(Av</2) ta,n{(yc/vo)K&Vc)(vo-Vc)}. (32) 

Expression (32) is plotted in Fig. 5. Notice that (32) is 
zero for vc=vo. Thus, (32) satisfies a necessary condi­
tion imposed by symmetry considerations. 

When a laser with a single active isotope is operated 
at high power at a frequency near v0, the type of con­
tribution to mode pulling to be expected from the effect 
considered is that shown in Fig. 6. 

In terms of the Doppler half-width, AVD, (32) is 

(Avc/2) tan[{2 \n2/(AvD/2)2}(Avc/2)(vc-vo)l. (33) 

Suppose several frequency modes are oscillating in the 
same spatial region. Then holes will be burnt in the 
local n(v). By changing the local slope of n(vc), the mode 
pulling that they individually experience is affected 
since the most favorable gain location is changed. 
Thus, it is clear that the mechanism we have discussed 
is responsible for "hole repulsion" effects of the type 
considered by Bennett.4 These holes will be burnt at the 
frequencies v$zLvm due to the reflection effects discussed 
by Bennett.4 This effect, of course, applies only when 
holes in n^ (v) overlap. 

If AJ>C=1 Mc/sec, then for the 1.1523 \x line of a 
helium-neon laser, (33) gives a mode pulling contribu­
tion of 2.7 kc/sec when ve—VQ=AVD/2, and two modes 
symmetrically positioned about VQ would be pulled 
together by 5.4 kc/sec. Somewhat larger hole repulsion 
effects are possible and can be tied into laser frequency 
stabilization schemes as we shall show later. 

We have excluded any consideration of the degener­
acies which can lead to Zeeman and Stark effects in our 
discussion of lasers and mode pulling. It is worth making 
a remark about Zeeman effects, however, because of the 
inherent interest of such effects. 

Consider a gas laser lacking Brewster angle windows. 
If the upper level of the transition is degenerate, in the 
presence of an appropriate magnetic field the levels cor­
responding to different magnetic quantum members 
will separate. The transitions from these separated 
levels to the lower levels will have different energy 
values and polarizations.5 In fact, if the population in­
version is sufficient, two oscillating fields slightly sepa­
rated in frequency will appear in the laser for each cavity 
resonance.19 Again, the effect we have considered is a 
contributor to this splitting. 

The functions n^iy) for each of these levels separated 
by the applied magnetic field will be somewhat dis­
placed from each other in frequency space. The local 
slopes of these functions will therefore be different at 
vc. Thus, our model predicts that the contribution to 
the mode pulling of the effect considered will be differ­
ent for each of these separated levels. This frequency 

- ^ 1 .0 
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FIG. 6. Contribution to mode pulling phenomenon in a gas 
laser of effect considered for a single isotope. 

difference will be a function of the intensity and direc­
tion of magnetic field. 

Bennett obtained the following expression for the 
mode pulling due to anomalous dispersion effect for an 
inhomogeneously broadened line near vo (in our 
notation16): 

2(ln2)1/2/A^\ 
" )(v0— VC) 

\AvDJ 

8(ln2)3/2 Avc 

3(TT)1/2 (A^)3 
(vo-vc)*. (34) 

19 H. Statz, R. Paananer, and G. F. Koster, J. Appl. Phys. 33, 
2319 (1962). 

If we compare this with (33) in the neighborhood of VQ, 
the effect we have discussed is a much smaller contribu­
tor to mode pulling than the anomalous dispersion 
effect discussed by Bennett. However, it does give rise 
to a detectable mode pushing effect. An experiment 
which directly detected this mode pushing effect will be 
described further on in this paper. 

7. MODE PULLING EXPERIMENT 

In the experiment to be described, a convenient means 
of frequency tuning a gas laser was required. The means 
adopted was a thin dielectric plate mounted in the 
cavity on an indexed rotatable table. The plate em­
ployed was a microscope slide cover glass of 0.147-mm 
thickness and index of refraction 1.5 and was selected 
for minimum prismatic angle by observing fringes under 
monochromatic light. The table was adapted from a 
Spencer (American Optical Company) spectrometer, 
model No. 10025. The position of this table could be 
read to ±0.5 min. 

Consider the change in frequency of an oscillating 
mode of a gas laser as the plate undergoes a small rota­
tion (up to a maximum of 20 min) from the Brewster 
angle. The optical path in the cavity changes from L\ 
to Li+AL and the frequency of the oscillating mode 
changes from v\ to v\-\-Av. If the number of wavelengths 
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traveled by the oscillating field in a single round trip 
around the cavity is unaltered, we can write 

X - / (MC/scc) 

2LlVl 2 ( Z , 1 + A L ) ( P I + A * 0 

which yields: 
AL/L1=—Av/vi. 

(35) 

(S6) 

We have assumed AL arises only from the rotation of 
the tuning plate. Therefore, AL is a function of the vari­
able angle <j> between the normal to the plane and the 
direction of incidence of the oscillating field in the 
cavity and is also a function of the constant plate thick­
ness D and the constant (for a given emission line) index 
of refraction n of the plate. The value of A<£ for any ro­
tation of the tuning plate is equal to the angle through 
which the indexed table is rotated and can thus be read 
directly. 

We can write 
AL={AL/A<j>)A<j>. (37) 

Combining (36) and (37) gives 

Av/V = - (1/L) (AL/A0) A0. (38) 

The expression for dL/d(j> is well known from the theory 
of compensating plates as used in Michelson inter­
ferometers to be 

dL/d<j>= -D(d/d<l>){(n2-sm2<t>y/2-cos<l>}. (39) 

Combining (38) and (39) and integrating gives 

\n{(v1+Av)/p1} = -(D/L) 
X{(w2-sin20)1/2-cos<£} | 01*I+A*. (40) 

I t would also have been possible to adapt a Kosters-
type compensator20 to frequency tune the laser. In that 
case, two microscope slide cover glasses of similar pris­
matic angles would be inserted at the Brewster angle 
into the laser cavity but set in opposite directions. If 
one prism is moved along the bisector of the prism 
angle a distance Ahy then an analysis similar to the 
above yields the expression (for a prism angle a): 

ln{(vi+AJOAI} = 2(L COS0)-1 s in (a /2 ) (» - 1)(AA). (41) 

This latter technique offers the promise of an order of 1 
order of magnitude greater sensitivity than the tuning 
plate method actually used in the experiment. 

If a gas laser is excited such that only a single fre­
quency mode can oscillate, then laser action can occur 
only over the frequency range 

Va^V^Vb. (42) 

To simplify the discussion, let us initially assume that 
the frequency range given by (42) is such that only a 
single frequency mode can show laser action in the 
TEMOQ spatial mode. We shall also assume the tuning 

20 C. Candler, Modern Interferometry (The University Press 
Glasgow, Scotland, 1950), p. 474. 
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FIG. 7. Comparison of Bennett's theory with 
mode pulling experiment. 

plate is inserted inside the gas laser cavity at the 
Brewster angle to the field. By observing the positions 
of the indexed table as the laser goes on and off, the 
(j)a and 4>b corresponding to va and vb, respectively, can 
be determined. Using this information and employing 
(40), the frequency of the laser mode can be set to v0 or 
to any other predetermined frequency in the range given 
by (42). This procedure directly determines the loss 
line of the laser also. 

Let us now consider a situation where the excitation 
level of the laser is set so that two but not three fre­
quency modes can simultaneously laser. For simplicity, 
assume that only a single isotope of the material show­
ing laser action is present so that the gain curve is 
essentially symmetric about v0. We shall restrict our­
selves to situations where the two simultaneously oscil­
lating frequency modes are close to being symmetrically 
positioned about v0. If the laser is operated close to 
threshold for these modes, hole burning effects should 
be quite small as indicated by the results of Szoke and 
Javan.21 

In the experiment, two simultaneously oscillating 
frequency modes operated under the above conditions 
were focused on the detector surface of a 7102 photo-
multiplier tube and the beat frequency was elec­
tronically detected by a heterodyning technique.22 The 
geometry was confocal with a 140-cm mirror separa­
tion enclosing a 1-m helium-neon filled laser tube 
with Brewster angle windows. A tuning plate was in 

21 A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963). 
22 A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, 

Phys. Rev. 99, 1691 (1955). 
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the cavity. The change in the beat frequency was ob­
served as the tuning plate was rotated through small 
angles. By changing the local oscillator frequency, the 
fact that this beat frequency was a maximum in the 
symmetric position of the oscillating modes about vo 
was determined. The experimental data obtained are 
shown in Fig. 7 and a schematic of the equipment in 
Fig. 8. In Fig. 7, we also show the predictions of 
Bennett's theory4 for the 1.1523 fj, line of neon investi­
gated in this experiment (assuming hole repulsion is 
absent) for the cavity Q of the laser used. The experi­
mental data indicate that either mode pushing is sig­
nificant even just above threshold or that there is some 
error in Bennett's result. The atter possibility cannot 
be ruled out since Bennett's results are based upon best 
fits to curves, but the data were taken close enough to 
the line center such that Bennett's results should be 
close to reality. If then we accept the conclusion that 
mode pushing is responsible for the discrepancy between 
our data and the predictions of Bennett's theory, the 
fact that we operated close to threshold indicates very 
shallow holes were responsible for this discrepancy. This 
means an effect due to the local slope of the depleted 
gain curve is responsible. The size of the discrepancy 
and the fact that the local slope of the depleted gain 
curve is responsible means our previous calculation of 
an additional mode pushing effect due to the local 
slope of the gain curve is justified since the size of the 
discrepancy is just what would be expected from our 
theory. This is so since in the asymmetrical situation, 
one hole will be closer to the laser loss line than the 
other and thus effectively operating in the hole created 
by the other mode while exerting no reciprocal effect. 

It is worth pointing out that the technique involved 
in this experiment can be employed to detect succes­
sively higher order mode pulling effects. Suppose the 
excitation level is set so that four but not five fre­
quency modes can oscillate simultaneously in the TEMoo 
spatial mode: 

and the beat frequency between vi and vi is observed 
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FIG. 8. Schematic of apparatus used in mode 
pulling experiment. 

when these modes are symmetrically displaced about 
vo. In that case, higher order terms in Bennett's mode 
pulling results can be compared with experiment and 
corrected. Incidentally, if three modes are showing laser 
action in a single isotope laser, and if the beat frequency 
between v\ and v% is set to a minimum, then v2 should be 
very close to vo if the gain curve is symmetric as can be 
seen from Fig. 6. This effect gives an error signal of 
^ 1 kc/sec per Mc/sec displacement of v2 from vo. If the 
excitation level is lowered until v\ and vz drop out, v2 

will be the frequency of the sole remaining oscillating 
mode. It should also be pointed out that at the sym­
metrical location of vi and vz about vo, a minimum 
mode pushing effect on the beat frequency between 
these modes will be observed as the excitation level is 
varied. 
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